少年的我提示您:看后求收藏(第270章 暗黑神界,我哥居然成神了,少年的我,笔趣阁),接着再看更方便。

请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。

可是到了神界,却完全不一样了。

这个世界就像是传说中的极乐净土,永远充斥着光明,和谐,美好。

似乎没有一丝阴霾。

也就永远没有黑夜。

可是,苏小北却觉得,黑暗和光明是世界的两半。

就如同一只阴阳眼。

阴阳交缠,互为犄角。

一个完全光明,没有丝毫阴暗的世界,真的存在吗?

想到这里,苏小北便觉得不寒而栗。

眼睛所看到的,不一定是真实!

干脆,他闭上眼睛,用神识来感悟周围的一切。

可是,完全屏蔽眼睛以后,苏小北就感觉到了,有什么不对。

神识所感受到的,根本没有任何阳光,而是无尽的阴冷,与诡异。

这一点,实在太过反常!

苏小北咬紧牙关,将神识延伸出去。

越延伸出去,苏小北就越觉得胆寒!

这到底是什么情况?

此时,在他的神识之中,神界完全换了一个模样。

仓忙之中,苏小北再次睁开眼睛。

再次看到的,依旧是神界的花团锦簇,一切都无比美好。

这,不对劲!

无数的灵力涌入脑海

图论

共18个含义

树(英语tr)是一种抽象数据类型(adt)或是实现这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n&t0)个有限节点组成一个具有层次关系的集合。它是一种无向图(h),其中任意两个顶点间存在唯一一条路径。树图广泛应用于计算机科学的数据结构中,比如二叉查找树、堆、tr树以及数据压缩中的霍夫曼树等。

顶点

v

v - 1

色数

2

定义

如果一个无向简单图 满足以下相互等价的条件之一,那么 是一棵树

是没有回路的连通图。

没有回路,但是在内添加任意一条边,就会形成一个回路。

是连通的,但是如果去掉任意一条边,就不再连通。

是连通的,并且3顶点的完全图?不是的子图。

内的任意两个顶点能被唯一路径所连通。

如果无向简单图有有限个顶点(设为n个顶点),那么 是一棵树还等价于

是连通的,有n ? 1条边,并且没有简单回路。

如果一个无向简单图中没有简单回路,那么是森林。

性质

一棵树中每两个点之间都有且只有一条路径(指没有重复边的路径)。一颗有n个点的树有n-1条边,也就是连接n个点所需要的最少边数。所以如果去掉树中的一条边,树就会不连通。

如果在一棵树中加入任意的一条边,就会得到有且只有一个环的图。这是因为这条边连接的两个点(或是一个点)中有且只有一条路径,这条路径和新加的边连在一起就是一个环。如果把一个连通图中的多余边全部删除,所构成的树叫做这个图的生成树。

如果要在树中加入一个点,就要加入一条这个点和原有的点相连的边。这条边不会给这棵树增加一个环或者多余的路径。所以每次这样加入一个点,就可以构成一棵树。

一棵树既可以是有向的也可以是无向的。显然,树是连通图,但不会是双连通图(对于无向图)或者强连通图(对于有向图)。树可以算是稀疏图。

本章未完,点击下一页继续阅读。

其他类型小说相关阅读More+

七零娇女致富手册

梦缘狐言

我真没想成为首富啊

民国等雨

百变武尊

楼顶菜园

大佬每天想低调

南冥炖鱼

剑来陈平安

烽火戏诸侯

农女的逆袭人生

苏苏味